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Abstract. In this paper we shall present the optimization problem in a set of solutions of operator
inclusion with the maximal monotone operator. Then we treat optimization problem by Galerkin
method and we prove convergence of optimal values of approximated optimization problems to the
one for the original problem. Finally, we apply the results to give a simple example.
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1. Introduction

The operator inclusions have a wide spectrum of applications in various branches
of both pure and applied sciences, particularly in physics, economics and engin-
eering. The theory of operator inclusions has been developed over the last years in
intimate connection with physical applications in elasticity and modern plasticity
theory, hydrodynamics etc. Problems connected with inclusions or with inclusions
and optimization were considered by many authors, among others by N.U. Ahmed
and X. Xiang [1], V. Barbu [2], K. Dimling [3], S. Hu and N. Papageorgiou [5], V.I.
Ivanenko and V.S. Melnik [7], M. Kisielewicz [8] and M.A. Noor [11]. In [6] the
authors employ standard Galerkin method to obtain a sequence of approximating
multivalued systems and prove the existence of periodic solutions. In the work [9]
the authors consider the well-posedness for family of variational inequalities and
for an optimization problem with constraints defined by variational inequalities
having unique solution. In [10] the authors develop the methods for the case of
alone variational problems with multivalued monotone and coercive operators.

In our paper we consider the optimisation problem in the set of solutions of
some inclusion with a maximal monotone operator. We apply the standard Galer-
kin technique (see [6] and [12]) to obtain the sequence of variational inequalities.
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Next we consider the optimization of this problem in the finite-dimensional spaces.
To prove the convergence of the sequence of approximated solutions we use the
regularization method.

The problem considered in this paper is the generalisation of the problem for a
system governed by single-valued operator from our work [4].

Let Y be a real, reflexive Banach space with the norm ‖ · ‖. By Y ∗ we denote its
dual with the duality relation 〈·, ·〉 between Y ∗ and Y .

Let us consider the mapping A : Y → 2Y
∗

and the functional J : Y → R. We
shall consider the following nonlinear inclusion

f ∈ Ay (1.1)

for a given f ∈ Y ∗.

DEFINITION 1.1. The operator A is coercive with respect to the given fixed f ∈
Y ∗ if there exists an r > 0 such that

〈y∗ − f, y〉 > 0 ∀(y, y∗) ∈ G(A) with ‖y‖ > r

where G(A) is the graph of the operator A.

THEOREM 1.1. If the operator A is maximal monotone and coercive with respect
to the given fixed f ∈ Y ∗ then the set Yad of solutions of the inclusion (1.1) is
non-empty, convex and closed in Y , (see [12]).

Notice that the inclusion (1.1) is equivalent to a variational inequality (see [12]):

〈f − z∗, y − z〉 � 0 ∀(z, z∗) ∈ G(A). (1.2)

PROBLEM P : We shall consider the following optimization problem: find y0 ∈
Yad such that

J (y0) = inf
y∈Yad

J (y).

THEOREM 1.2. If the functional J is continuous, strictly convex, coercive (i.e.
lim‖y‖→∞ J (y) = ∞) and the operator A is maximal monotone, coercive with
respect to the given fixed f ∈ Y ∗ then the optimization problem P has a unique
solution y0 ∈ Yad .

The proof is immediate because it is known that any continuous strictly convex
functional is weakly lower semicontinuous and the closed, convex set Yad is weakly
closed in Y .
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2. Regularizing and approximating optimization problem

Consider a family of regularized inclusions

f ∈ Ayn + εnByn for n = 1, 2, . . . (2.1)

yn ∈ Y , εn > 0 ∀n ∈ N and εn → 0. Moreover single-valued operator B : Y →
Y ∗.

DEFINITION 2.1. The operator B : Y → Y ∗ has the S-property if for every
sequence (vn)n∈N ⊂ Y with the properties:

vn ⇀
n→∞ v(weakly in Y ) and 〈Bvn − Bv, vn − v〉 →

n→∞ 0

we have vn →
n→∞ v (strongly in Y ).

LEMMA 2.1. If the operator A is maximal monotone, coercive with respect to
the given fixed f ∈ Y ∗ and the operator B is strictly monotone, hemicontinuous,
bounded and satisfies S-property then for each n ∈ N the equation (2.1) has a
unique solution yn and yn → y (strongly in Y ) where y solves the original inclusion
(1.1) and, at the same time, y is the unique solution of the variational inequality

〈By, z − y〉 � 0 ∀z ∈ Yad (2.2)

(see [12]).

Let {V } denote the family of all finite-dimensional subspaces of the original space
Y i.e. V ∈ {V } implies V ⊂ Y , dim V < ∞ and

⋃
V∈{V } V = Y .

We fix V ∈ {V }. In the place of the variational inequality (1.2) we consider the
approximate inequality

〈f − z∗, yV − z〉 � 0 for all (z, z∗) ∈ G(A) and yV , z ∈ V. (2.3)

THEOREM 2.1. If the operator A is maximal monotone and coercive with respect
to the given f ∈ Y ∗ then the set Vad of solutions of the inequality (2.3) is non-empty
convex and closed.

Proof. Let us denote by IV the embedding operator from V to Y and by I ∗
V the

operator adjoint to IV from Y ∗ to V ∗. The inequality (2.3) can be presented by the
operator form

fV ∈ AV yV (2.4)

where the operator AV = I ∗
VAIV and fV = I ∗

V f .
The operator AV is maximal monotone and coercive with respect to fV . Indeed,

the operator A is monotone that the following inclusion is true

〈y∗
V − z∗

V , IV yV − IV zV 〉Y ∗×Y � 0 ∀yV , zV ∈ V (2.5)
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where y∗
V ∈ A(IV yV ) and z∗

V ∈ A(IV zV ). From the definition of the operator
adjoint and (2.5) it follows that

〈y∗
V − z∗

V , IV yV − IV zV 〉Y ∗×Y
= 〈I ∗

V y
∗
V − I ∗

V z
∗
V , yV − zV 〉V ∗×V � 0 ∀yV , zV ∈ V.

Therefore the operator AV is monotone.
From the maximal monotonicity of the operator A we have

〈y∗ − z∗, IV yV − IV zV 〉Y ∗×Y � 0 ∀(IV zV , z∗) ∈ G(A)

it follows that (IV yV , y
∗) ∈ G(A).

It is obvious that

〈I ∗
V y

∗ − I ∗
V z

∗, yV − zV 〉V ∗×V = 〈y∗
V − z∗

V , yV − zV 〉V ∗×V
� 0 ∀(zV , z∗

V ) ∈ G(AV ).

Therefore (yV , y∗
V ) ∈ G(AV ) where y∗

V = I ∗
V y

∗ ∈ AV yV and z∗
V = I ∗

V z
∗ ∈ AV zV .

By the definition of coercivity with respect to f of the operator A we have
〈y∗ − f, IV yV 〉Y ∗×Y � 0 ∀(IV yV , y∗) ∈ G(A) with ‖IV yV ‖Y > r. So, we have
〈y∗
V −fV , yV 〉V ∗×V > 0 ∀(yV , y∗

V ) ∈ G(AV ) and ‖yV ‖V > r where y∗
V = I ∗

V y
∗ ∈

AV yV and fV = I ∗
V f .

We conclude from this that the operator AV is maximal monotone and coercive
with respect to fV . Therefore the set Vad of the solutions of inequality (2.3) is
non-empty, convex and closed. �

We shall consider the following approximate Problem PV in the subspace V .

PROBLEM PV : Find y0
V ∈ V such that J (y0

V ) = infyV ∈Vad J (yV ). Similarly as for
the Problem P we can state that the Problem PV has a unique solution y0

V ∈ Vad .
Consider a family of regularized inclusions for the appropriate inclusion (2.4)

in the form

fV ∈ AV ynV + εnBV ynV for n = 1, 2, . . . (2.6)

where εn > 0∀n ∈ N and εn → 0 and n → ∞ and BV = I ∗
V BIV .

Let us now consider the problem of convergence of the approximation.

LEMMA 2.2. If the operator A is maximal monotone, coercive with respect to the
given fixed f ∈ Y ∗ then for all y ∈ Yad there exists a sequence (yV ) such that
yV ∈ Vad and yV → y (strongly in Y ) as dimV → ∞.

Proof. Because the operator B is strictly monotone hemicontinuous bounded
and satisfies S-property then the regularized inclusion (2.6) has the unique solution
∈ V for n = 1, 2, . . . The sequence (ynV ) is strongly convergent to any ȳV as
εn → 0. For all fixed n ∈ N from Galerkin approximation a sequence (ynV ) of
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the solutions of (2.6) is strongly convergent to any ȳn ∈ Y as dimV → ∞ and ȳn
satisfies of (2.1).

From Lemma 2.1 we have that ȳn → ȳ (strongly in Y ) and ȳ is unique solution
of (2.2). From this and the inequality

‖ȳV − ȳ‖ � ‖ȳV − ynV ‖ + ‖ynV − ȳn‖ + ‖ȳn − ȳ‖
it follows that ȳV → ȳ (strongly in Y ).

The operator B can be selected arbitrarily, so we can deduce that the sequence
(ȳV ) exists for every ȳ ∈ Yad . �

Now we shall prove that the sequence (y0
V ) of solutions of problem PV is

convergent to the solution of the original problem.

THEOREM 2.2. Let the operator A be maximal monotone, coercive with respect
to the given fixed f ∈ Y ∗. Let the functional J be continuous, strictly convex,
coercive then a sequence (y0

V ) of solutions of the problems PV is weakly convergent
in Y to the solution y0 of the problem P .

Proof. Since J is continuous and coercive in reflexive Banach space then there
exists a positive constant M < ∞ such that ‖y0

V ‖ � M ∀V ∈ {V }. It follows
that there exists a subsequence which will be also denoted (y0

V ) weakly convergent
to ȳ0 in Y as dimV → ∞. From Lemma 2.2 exists a sequence yV such that
yV ∈ Vad and yV → y0 (strongly in Y ) as dimV → ∞. Because J is weakly
lower semi-continuous we obtain

J (ȳ0) � lim inf J (y0
V ) � lim inf J (yV ) = J (y0)

as dimV → ∞. From the definition of y0 it follows that ȳ0 = y0 and from the
uniqueness of the solution of the optimization problem P not only a subsequence
but the whole sequence (y0

V ) is weakly convergent to y0 in Y as dimV → ∞. �

3. An example

In this subsection we use the results from the previous sections to present here one
selected result.

A typical functional appearing in optimization problems is the quadratic func-
tional:

J (y) = ‖E(y − yd)‖2
H

where E ∈ L(Y,H), Y = H 1(�),H = L2(�),� ⊂ R
n is a bounded domain with

a C2-boundary  (see [12]), yd is given element of H 1(�).
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Let E be embedding operator from Y into H . The cost functional is equivalent
to:

J (y) =
∫
�

(y(x)− yd(x))
2 dx. (3.1)

Given f ∈ L2(�) consider the following nonlinear Neumann problem


Fy(x) + β(y(x)) � f (x) a.e. on �
∂y

∂η
= 0 on  

(3.2)

where F : Y → Y ∗ is defined as

Fy(x) = −
n∑

i,j=1

∂

∂xi

(
aij (x)

∂y(x)

∂xj

)
+ a0(x)y

a0, aij ∈ L∞(�) for i, j = 1, 2, . . . , n.
We assume that:

(i)
∑n

i,j=1 aij (x)ξiξj � α
∑n

i=1 ξ
2
i ∀ξi, ξj ∈ R for certain α � 0 and a0(x) � 0.

(ii) β : Y → 2Y
∗

is a coercive maximal monotone map.
(iii) ∂y

∂η
is a derivative of y in the direction of the exterior normal to  .

From the assumptions (i), (ii) we conclude that the operator F + β is maximal
monotone on the

D(F + β) =
{
y ∈ H 1(�); ∂y

∂η

∣∣∣∣
 

= 0

}

and F + β is coercive with respect to the given fixed f ∈ L2(�).
Therefore the set Yad of solutions of the differential inclusion (3.2) is non-

empty, convex and closed in L2(�).
The functional (3.1) is continuous, strictly convex, coercive. Therefore, from

Theorem 1.2 the optimization problem for the functional (3.1) and for the differ-
ential inclusion (3.2) has a unique solution y0 ∈ Yad . After approximation we
transform our problem into a problem of mathematical programming.
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